Go 泛型和非泛型代码详解

 更新时间:2021年10月8日 00:08  点击:1442

1. 开启泛型

在 Go1.17 版本中,可以通过:

 export GOFLAGS="-gcflags=-G=3"

或者在编译运行程序时加上:

 go run -gcflags=-G=3 main.go

2.无泛型代码和泛型代码

2.1. AddSlice

首先看现在没有泛型的代码: 

package main
 ​
 import (
   "fmt"
 )
 ​
 func AddIntSlice(input []int, diff int) []int {
   output := make([]int, 0, len(input))
   for _, item := range input {
     output = append(output, item+diff)
   }
   return output
 }
 ​
 func AddStrSlice(input []string, diff string) []string {
   output := make([]string, 0, len(input))
   for _, item := range input {
     output = append(output, item+diff)
   }
   return output
 }
 ​
 func main() {
   intSlice := []int{1, 2, 3, 4, 5, 6}
   fmt.Printf("intSlice [%+v] + 2 = [%+v]\n", intSlice, AddIntSlice(intSlice, 2))
 ​
   strSlice := []string{"hi,", "hello,", "bye,"}
   fmt.Printf("strSlice [%+v] + man = [%+v]\n", strSlice, AddStrSlice(strSlice, "man"))
 }
 //output
 //intSlice [[1 2 3 4 5 6]] + 2 = [[3 4 5 6 7 8]]
 //strSlice [[hi, hello, bye,]] + man = [[hi,man hello,man bye,man]]

上面没有使用泛型的代码中,对 intSlice strSlice,需要构造两个函数对它们进行处理;而如果后续还有 float64uint32 等类型就需要更多地 Add...Slice 函数。

而如果使用泛型之后,这些 Add...Slice 函数就可以合并为一个函数了,在这个函数中,对那些可以使用 + 操作符的类型进行加操作(无论是数学的加还是字符串的连接)。

泛型代码如下:

 package main
 ​
 import (
   "fmt"
 )
 ​
 type PlusConstraint interface {
   type int, string
 }
 ​
 func AddSlice[T PlusConstraint](input []T, diff T) []T {
   output := make([]T, 0, len(input))
   for _, item := range input {
     output = append(output, item+diff)
   }
   return output
 }
 ​
 func main() {
   intSlice := []int{1, 2, 3, 4, 5}
   fmt.Printf("intSlice [%+v] + 2 = [%v]\n", intSlice, AddSlice(intSlice, 2))
 ​
   strSlice := []string{"hi,", "hello,", "bye,"}
   fmt.Printf("strSlice [%v] + man = [%v]\n", strSlice, AddSlice(strSlice, "man"))
 }
 //output
 //intSlice [[1 2 3 4 5]] + 2 = [[3 4 5 6 7]]
 //strSlice [[hi, hello, bye,]] + man = [[hi,man hello,man bye,man]]

是不是超级简单,但是 AddSlice 函数中引入了约束的概念,即 PlusConstraintAddSlice 的方括号中是类型参数,T 就是这个类型参数的形参,后面的 PlusConstraint 就是 T 的约束条件,意思是只有满足约束条件的 T 类型才可以在这个函数中使用。

AddSlice 后面圆括号中的参数是常规参数也称为非类型参数,它们可以不制定具体类型(int、string 等),可以使用 T 来代替。

而在 AddSlice 中,对于 T 类型的值 item,它会将 item 和 diff 进行 + 操作,可能是数学上的累加,也可能是字符串的连接。

那现在你可能要问了,T 类型就一定是支持 + 操作符的吗,有没有可能是一个 struct 呢?

答案是:不可能。

前面说过,只有满足约束条件的 T 才可以在 AddSlice 中使用,而约束条件就是上面的 PlusConstraint

PlusConstraint 定义的方式和接口类型的定义是一样的,只不过内部多了一行:

 type int, string

这句话就是说,只有 intstring 这两个类型才满足这个约束,这里涉及到类型集的概念,后续会提到。

因此,有了这个约束条件,传入到 AddSlice 的参数 input diff 都是可以使用 + 操作符的。如果你的 AddSlice 函数中想传入 float46uint64 等类型,就在 PlusConstraint 中加上这两个类型即可。

上面的代码中,只是对 int 和 string 两种基础类型进行约束。实际开发中,我们可能会定义自己的类型:

 type MyInt int
 type MyStr string

那如果在 AddSlice 中使用这两种类型可以编译通过吗?答案是可以的。在泛型草案中,这种情况是无法编译通过的,需要在约束条件中添加~int | ~string,表示底层类型是 int 或 string 的类型。而在 Go1.17 中,上面的 PlusConstraint 就包括了 intstring、以及以这两者为底层类型的类型。

 package main
 ​
 import (
   "fmt"
 )
 ​
 type MyInt int
 type MyStr string
 ​
 type PlusConstraint interface {
   type int, string
 }
 ​
 func AddSlice[T PlusConstraint](input []T, diff T) []T {
   output := make([]T, 0, len(input))
   for _, item := range input {
     output = append(output, item+diff)
 ​
   }
   return output
 ​
 }
 ​
 func main() {
   intSlice := []MyInt{1, 2, 3, 4, 5}
   fmt.Printf("intSlice [%+v] + 2 = [%v]\n", intSlice, AddSlice(intSlice, 2))
 ​
   strSlice := []MyStr{"hi,", "hello,", "bye,"}
   fmt.Printf("strSlice [%v] + man = [%v]\n", strSlice, AddSlice(strSlice, "man"))
 ​
 }
 //output
 //intSlice [[1 2 3 4 5]] + 2 = [[3 4 5 6 7]]
 //strSlice [[hi, hello, bye,]] + man = [[hi,man hello,man bye,man]]

2.2. 带方法的约束 StringConstraint

前面说到,约束的定义和接口很像,那如果约束中有方法呢,那不就是妥妥的接口吗?

两者还是有区别的:

  • 接口的成员只有方法和内嵌的接口类型
  • 约束的成员有方法、内嵌约束类型、类型(int、string等)

看下面一个没有使用泛型的例子:

 package main
 ​
 import (
   "fmt"
 )
 ​
 func ConvertSliceToStrSlice(input []fmt.Stringer) []string {
   output := make([]string, 0, len(input))
   for _, item := range input {
     output = append(output, item.String())
   }
   return output
 }
 ​
 type MyInt int
 ​
 func (mi MyInt) String() string {
   return fmt.Sprintf("[%d]th", mi)
 }
 func ConvertIntSliceToStrSlice(input []MyInt) []string {
   output := make([]string, 0, len(input))
   for _, item := range input {
     output = append(output, item.String())
   }
   return output
 }
 ​
 type MyStr string
 ​
 func (ms MyStr) String() string {
   return string(ms) + "!!!"
 }
 func ConvertStrSliceToStrSlice(input []MyStr) []string {
   output := make([]string, 0, len(input))
   for _, item := range input {
     output = append(output, item.String())
   }
   return output
 }
 func main() {
   intSlice := []MyInt{1, 2, 3, 4}
   // compile error, []MyInt not match []fmt.Stringer
   //fmt.Printf("%v convert %v", intSlice, ConvertSliceToStrSlice(intSlice))
 ​
   fmt.Printf("%v convertIntToStr %v \n", intSlice, ConvertIntSliceToStrSlice(intSlice))
 ​
   strSlice := []MyStr{"111", "222", "333"}
   fmt.Printf("%v convertStrToStr %v \n", strSlice, ConvertStrSliceToStrSlice(strSlice))
   // output
   //[[1]th [2]th [3]th [4]th] convertIntToStr [[1]th [2]th [3]th [4]th]
   //[111!!! 222!!! 333!!!] convertStrToStr [111!!! 222!!! 333!!!]
 }

上面代码中,MyInt MyStr 都实现了 fmt.Stringer 接口,但是两个都无法调用 ConvertSliceToStrSlice 函数,因为它的入参是 []fmt.Stringer 类型,[]MyInt 和它不匹配,这在编译的时候就是会报错的,而如果我们想要把[]MyInt 转换为 []string,就需要定义一个入参为[]MyInt 的函数,如 ConvertIntSliceToStrSlice;对于 []MyStr,则需要另一个函数。。。那明明两者都实现了 fmt.Stringer,理论上应该都可以通过 ConvertSliceToStrSlice 啊,这也太反人类了。

哈哈,泛型实现了这个功能。

 

package main
 ​
 import (
   "fmt"
 )
 ​
 type StringConstraint interface {
   String() string
 }
 ​
 func ConvertSliceToStrSlice[T StringConstraint](input []T) []string {
   output := make([]string, 0, len(input))
   for _, item := range input {
     output = append(output, item.String())
   }
   return output
 }
 ​
 type MyInt int
 ​
 func (mi MyInt) String() string {
   return fmt.Sprintf("[%d]th", mi)
 }
 ​
 type MyStr string
 ​
 func (ms MyStr) String() string {
   return string(ms) + "!!!"
 }
 func main() {
   intSlice := []MyInt{1, 2, 3, 4}
   // compile error, []MyInt not match []fmt.Stringer
   fmt.Printf("%v convert %v\n", intSlice, ConvertSliceToStrSlice(intSlice))
 ​
 ​
   strSlice := []MyStr{"111", "222", "333"}
   fmt.Printf("%v convert %v\n", strSlice, ConvertSliceToStrSlice(strSlice))
   // output
   //[[1]th [2]th [3]th [4]th] convert [[1]th [2]th [3]th [4]th]
   //[111!!! 222!!! 333!!!] convert [111!!! 222!!! 333!!!]
 }

简单吧,在 StringConstraint 约束中定义一个 String() string,这样只要有这个方法的类型都可以作为 T 在 ConvertSliceToStrSlice 使用。在这个约束条件下,所有具有 String() string 方法的类型都可以进行转换,但是我们如果想把约束条件定的更加苛刻,例如只有底层类型为 int 或者 string 的类型才可以调用这个函数。 那么我们可以进一步在 StringConstraint 中添加约束条件:

 type StringConstraint interface {
   type int, string
   String() string
 }

这样满足这个约束的类型集合就是底层类型是 int 或者 string,并且,具有 String() string 方法的类型。而这个类型集合就是 type int, string 的类型集合与 String() string 的类型集合的交集。具体的概念后续介绍。

这样,MyFloatMyUint 就无法调用 ConvertSliceToStrSlice 这个函数了。

 package main
 ​
 import (
   "fmt"
 )
 ​
 type StringConstraint interface {
   type int, string
   String() string
 }
 ​
 func ConvertSliceToStrSlice[T StringConstraint](input []T) []string {
   output := make([]string, 0, len(input))
   for _, item := range input {
     output = append(output, item.String())
   }
   return output
 }
 ​
 type MyFloat float64
 ​
 func (mf MyFloat) String() string {
   return fmt.Sprintf("%fth", mf)
 }
 ​
 type MyInt int
 ​
 func (mi MyInt) String() string {
   return fmt.Sprintf("[%d]th", mi)
 }
 ​
 type MyStr string
 ​
 func (ms MyStr) String() string {
   return string(ms) + "!!!"
 }
 func main() {
   intSlice := []MyInt{1, 2, 3, 4}
   // compile error, []MyInt not match []fmt.Stringer
   fmt.Printf("%v convert %v\n", intSlice, ConvertSliceToStrSlice(intSlice))
 ​
   strSlice := []MyStr{"111", "222", "333"}
   fmt.Printf("%v convert %v\n", strSlice, ConvertSliceToStrSlice(strSlice))
   // output
   //[[1]th [2]th [3]th [4]th] convert [[1]th [2]th [3]th [4]th]
   //[111!!! 222!!! 333!!!] convert [111!!! 222!!! 333!!!]
   floatSlice := []MyFloat{1.1, 2.2, 3.3}
   //type checking failed for main
   //prog.go2:48:44: MyFloat does not satisfy StringConstraint (MyFloat or float64 not found in int, string)
 ​
   fmt.Printf("%v convert %v\n", floatSlice, ConvertSliceToStrSlice(floatSlice))
 }

小结:

总的来说,泛型可以简化代码的编写,同时在编译时进行类型检查,如果类型不满足约束,就会在编译时报错;这样就避免了运行时不可控的错误了。

到此这篇关于Go 泛型和非泛型代码详解的文章就介绍到这了,更多相关Go 泛型和非泛型代码内容请搜索猪先飞以前的文章或继续浏览下面的相关文章希望大家以后多多支持猪先飞!

[!--infotagslink--]

相关文章

  • Go应用中优雅处理Error的技巧总结

    在程序员中,尤其是go新手,经常听到的一个讨论话题是:如何处理错误,这篇文章主要给大家介绍了关于Go应用中优雅处理Error的一些相关技巧,需要的朋友可以参考下...2021-09-08
  • Django def clean()函数对表单中的数据进行验证操作

    这篇文章主要介绍了Django def clean()函数对表单中的数据进行验证操作,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧...2020-07-09
  • 详解C#泛型的类型参数约束

    这篇文章主要介绍了C#泛型的类型参数约束的相关资料,文中讲解非常细致,帮助大家更好的理解和学习c#,感兴趣的朋友可以了解下...2020-07-31
  • C#泛型类型知识讲解

    这篇文章主要介绍了C#泛型类型知识,文中代码非常详细,帮助大家更好的理解和学习,感兴趣的朋友可以了解下...2020-06-25
  • golang官方嵌入文件到可执行程序的示例详解

    这篇文章主要介绍了golang官方嵌入文件到可执行程序,本文通过示例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下...2021-02-20
  • go浮点数转字符串保留小数点后N位的完美解决方法

    这篇文章主要介绍了go浮点数转字符串保留小数点后N位解决办法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下...2020-05-11
  • Go语言使用读写OPC详解

    这篇文章主要介绍了Go语言使用读写OPC详解,图文讲解的很清晰,有感兴趣的同学可以学习下...2021-03-05
  • Go项目的目录结构详解

    这篇文章主要介绍了Go项目的目录结构,对基础目录做了讲解,对项目开发中的其它目录也一并做了介绍,需要的朋友可以参考下...2020-05-01
  • Go中string与[]byte高效互转的方法实例

    string与[]byte经常需要互相转化,普通转化会发生底层数据的复制,下面这篇文章主要给大家介绍了关于Go中string与[]byte高效互转的相关资料,文中通过示例代码介绍的非常详细,需要的朋友可以参考下...2021-09-20
  • Go 容器遍历的实现示例

    Go 语言提供的基础容器,免不了要查询容器中的数据,那么是如何实现遍历的呢?本文将会介绍几种常用容易的遍历及其使用。感兴趣的可以了解一下...2021-06-13
  • 创建第一个Go语言程序Hello,Go!

    这篇文章主要介绍了创建第一个Go语言程序Hello,Go!本文详细的给出项目创建、代码编写的过程,同时讲解了GOPATH、Go install等内容,需要的朋友可以参考下...2020-05-01
  • 在Django中使用MQTT的方法

    这篇文章主要介绍了在Django中使用MQTT的方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧...2021-05-10
  • C# 泛型深入理解介绍

    在上一个专题中介绍了C#2.0 中引入泛型的原因以及有了泛型后所带来的好处,然而上一专题相当于是介绍了泛型的一些基本知识的,对于泛型的性能为什么会比非泛型的性能高却没有给出理由,所以在这个专题就中将会介绍原因和一些关于泛型的其他知识...2020-06-25
  • go语言中的Carbon库时间处理技巧

    这篇文章主要介绍了go语言中的Carbon库时间处理,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下...2021-02-05
  • 使用Redis获取数据转json,解决动态泛型传参的问题

    这篇文章主要介绍了使用Redis获取数据转json,解决动态泛型传参的问题,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧...2021-01-15
  • MyBatis在DAO层定义接口返回类型泛型无效的解决

    这篇文章主要介绍了MyBatis在DAO层定义接口返回类型泛型无效的解决方案,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教...2021-07-31
  • go嵌套匿名结构体的初始化详解

    这篇文章主要介绍了go嵌套匿名结构体的初始化详解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧...2020-12-16
  • 解决导入django_filters不成功问题No module named 'django_filter'

    这篇文章主要介绍了解决导入django_filters不成功问题No module named 'django_filter',具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧...2020-07-15
  • 详解如何使用Docker部署Django+MySQL8开发环境

    这篇文章主要介绍了详解如何使用Docker部署Django+MySQL8开发环境,文中通过示例代码以及图文介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面来一起学习学习吧...2020-07-19
  • Django项目连接MongoDB的三种方法

    本文主要介绍了Django项目连接MongoDB的三种方法,文中通过示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下...2021-09-27