c语言版本二叉树基本操作示例(先序 递归 非递归)

 更新时间:2020年4月25日 17:43  点击:1800

复制代码 代码如下:

请按先序遍历输入二叉树元素(每个结点一个字符,空结点为'='):
ABD==E==CF==G==

先序递归遍历:
A B D E C F G
中序递归遍历:
D B E A F C G
后序递归遍历:
D E B F G C A
层序递归遍历:
ABCDEFG
先序非递归遍历:
A B D E C F G
中序非递归遍历:
D B E A F C G
后序非递归遍历:
D E B F G C A
深度:
请按任意键继续. . .

复制代码 代码如下:

#include<stdio.h>
#include<stdlib.h>

#define OK 1
#define ERROR 0
#define TRUE 1
#define FALSE 0
#define OVERFLOW -1

#define STACK_INIT_SIZE 100
#define STACKINCREMENT 10

typedef int Status;

typedef char ElemType;
typedef struct BTNode
{
    ElemType data;
    struct BTNode *leftChild;
    struct BTNode *rightChild;
}BTNode, *BinTree;

typedef BinTree SElemType;

typedef struct{//栈结构定义
    SElemType *base;
    SElemType *top;
    int stacksize;
}SqStack;

BinTree CreateBinTree(BinTree T);
Status Visit(ElemType e);
Status Depth(BinTree T);
Status PreOrderRecursionTraverse(BinTree T, Status (*Visit)(ElemType e));
Status InOrderRecursionTraverse(BinTree T, Status (*Visit)(ElemType e));
Status PostOrderRecursionTraverse(BinTree T, Status (*Visit)(ElemType e));
Status LevelOrderRecursionTraverse(BinTree T, Status (*Visit)(ElemType e));

//定义栈的相关操作
Status InitStack(SqStack *S);
Status DestroyStack(SqStack *S);
Status ClearStack(SqStack *S);
Status StackEmpty(SqStack S);
int StackLength(SqStack S);
Status GetTop(SqStack S,SElemType *e);
Status Push(SqStack *S,SElemType e);
Status Pop(SqStack *S,SElemType *e);
Status StackTraverse(const SqStack *S);

Status PreOrderNoneRecursionTraverse(BinTree T, Status (*Visit)(ElemType e));
Status InOrderNoneRecursionTraverse(BinTree T, Status (*Visit)(ElemType e));
Status PostOrderNoneRecursionTraverse(BinTree T, Status (*Visit)(ElemType e));

int main()
{
    int depth;
    BinTree Tree = NULL;
    Status(*visit)(ElemType e) = Visit; 
    printf_s("请按先序遍历输入二叉树元素(每个结点一个字符,空结点为'='):\n"); 
    Tree = CreateBinTree(Tree);

    printf_s("\n先序递归遍历:\n");
    PreOrderRecursionTraverse(Tree,visit);
    printf_s("\n中序递归遍历:\n");
    InOrderRecursionTraverse(Tree,visit);
    printf_s("\n后序递归遍历:\n");
    PostOrderRecursionTraverse(Tree,visit);
    printf_s("\n层序递归遍历:\n");
    LevelOrderRecursionTraverse(Tree,visit);

    printf_s("\n先序非递归遍历:\n");
    PreOrderNoneRecursionTraverse(Tree,visit);
    printf_s("\n中序非递归遍历:\n");
    InOrderNoneRecursionTraverse(Tree,visit);
    printf_s("\n后序非递归遍历:\n");
    PostOrderNoneRecursionTraverse(Tree,visit);

    printf_s("\n深度:\n");
    depth = Depth(Tree);
    printf_s("%d\n", depth);
    system("pause");
    return 0;
}

//创建二叉树
BinTree CreateBinTree(BinTree T)
{
    char ch;
    scanf_s("%c", &ch);
    if (ch == '=')
    {
        T = NULL;
    }
    else
    {
        if (!(T=(BTNode *) malloc(sizeof(BTNode))))
        {
            exit(OVERFLOW);
        }
        T->data = ch;    //生成根结点
        T->leftChild = CreateBinTree(T->leftChild);
        T->rightChild = CreateBinTree(T->rightChild);
    }
    return T;
}

//访问二叉树
Status Visit(ElemType e)
{
    if (e == '\0')
    {
        return ERROR;
    }
    else
    {
        printf_s("%c ", e);
    }
    return OK;
}

//先序遍历递归算法
Status PreOrderRecursionTraverse(BinTree T, Status (*Visit)(ElemType e))
{
    if (T)
    {
        if (!Visit(T->data))
        {
            return ERROR;
        }
        PreOrderRecursionTraverse(T->leftChild, Visit);
        PreOrderRecursionTraverse(T->rightChild, Visit);
    }
    return OK;
}

//中序遍历递归算法
Status InOrderRecursionTraverse(BinTree T, Status (*Visit)(ElemType e))
{
    if (T)
    {
        InOrderRecursionTraverse(T->leftChild, Visit);
        if (!Visit(T->data))
        {
            return ERROR;
        }
        InOrderRecursionTraverse(T->rightChild, Visit);
    }
    return OK;
}

//后序遍历递归算法
Status PostOrderRecursionTraverse(BinTree T, Status (*Visit)(ElemType e))
{
    if (T)
    {
        PostOrderRecursionTraverse(T->leftChild, Visit);
        PostOrderRecursionTraverse(T->rightChild, Visit);
        if (!Visit(T->data))
        {
            return ERROR;
        }
    }
    return OK;
}

//层序遍历递归算法
Status LevelOrderRecursionTraverse(BinTree T, Status (*Visit)(ElemType e))
{
    if (T)
    {
        BTNode *Q[100];//假设不溢出
        int front = -1,rear = -1;
        if (T)
        {
            Q[++rear] = T;
            printf_s("%c", T->data);
            while (front != rear)
            {
                BTNode *p;
                if (!(p = (BTNode *)malloc(sizeof(BTNode))))
                {
                    exit(OVERFLOW);
                }
                p = Q[++front];
                if (p->leftChild)
                {
                    Q[++rear] = p->leftChild;
                    printf("%c",p->leftChild->data);
                }
                if (p->rightChild)
                {
                    Q[++rear] = p->rightChild;
                    printf("%c",p->rightChild->data);
                }
            }
        }
    }
    return OK;
}

Status Depth(BinTree T)
{
    int a,b;
    if (!T)
    {
        return ERROR;
    }
    else
    {
        a = Depth(T->leftChild) + 1;
        b = Depth(T->rightChild) + 1;
        return a > b ? a : b;
    }
}

//先序遍历非递归算法
Status PreOrderNoneRecursionTraverse(BinTree T, Status (*Visit)(ElemType e))
{
    SqStack S;
    SElemType p;

    InitStack(&S);
    Push(&S, T);

    while (!StackEmpty(S))
    {
        Pop(&S, &p);
        if (!Visit(p->data))
        {
            return ERROR;
        }
        if (p->leftChild)
        {
            Push(&S, p->rightChild);
        }
        if (p->rightChild)
        {
            Push(&S, p->leftChild);
        }
    }
    DestroyStack(&S);
    return OK;
}

//中序遍历非递归算法
Status InOrderNoneRecursionTraverse(BinTree T, Status (*Visit)(ElemType e))
{
    SqStack S;
    SElemType p;

    InitStack(&S);
    Push(&S, T);
    while (!StackEmpty(S))
    {
        while (GetTop(S,&p) && p)
        {
            Push(&S, p->leftChild);
        }
        Pop(&S, &p);
        if (!StackEmpty(S))
        {
            Pop(&S, &p);
            if (!Visit(p->data))
            {
                return ERROR;
            }
            Push(&S, p->rightChild);
        }
    }
    DestroyStack(&S);
    return OK;
}

//后序便利非递归算法
Status PostOrderNoneRecursionTraverse(BinTree T, Status (*Visit)(ElemType e))
{
    SqStack S;
    SElemType p, q;
    InitStack(&S);
    Push(&S,T);
    while(!StackEmpty(S))
    {
        while(GetTop(S,&p)&&p&&(p->leftChild||p->rightChild))
        {
            Push(&S,p->rightChild);
            Push(&S,p->leftChild);
        }
        if(!StackEmpty(S)){
            Pop(&S,&p);
            if (p)
            {
                if(!Visit(p->data))
                {
                    return ERROR;
                }
            }
            else
            {
                Pop(&S,&p);
                if(!Visit(p->data))
                {
                    return ERROR;
                }
            }           
            while (GetTop(S,&q)&&q&&p==q->rightChild)
            {
                Pop(&S,&p);
                if(!Visit(p->data))
                {
                    return ERROR;
                }
                GetTop(S,&q);
            }
        }
    }
    DestroyStack(&S);
    return OK;
}

//-----------栈的相关操作--------------//
Status InitStack(SqStack *S){
    S->base = (SElemType *)malloc(STACK_INIT_SIZE * sizeof(SElemType));
    if(!S->base)
    {
        exit(0);
    }
    S->top = S->base;
    S->stacksize = STACK_INIT_SIZE;
    return OK;
}

Status DestroyStack(SqStack *S){
    if(!S)
    {
        exit(0);
    }
    free(S->base);
    return OK;
}

Status ClearStack(SqStack *S){
    if(!S)
    {
        return FALSE;
    }
    S->top = S->base;
    return OK;
}

Status StackEmpty(SqStack S){
    if(S.top==S.base)
    {
        return TRUE;
    }
    else
    {
        return FALSE;
    }
}

int StackLength(SqStack S){
    return S.stacksize;
}

Status GetTop(SqStack S,SElemType *e){
    if(S.top == S.base)
    {
        return FALSE;
    }
    else
    {
        *e = *(S.top-1);
        return OK;
    }
}

Status Push(SqStack *S,SElemType e){
    if(S->top-S->base>=S->stacksize)
    {
        S->base = (SElemType *)realloc(S->base, (S->stacksize + STACKINCREMENT) * sizeof(SElemType));
        if(!S->base)
        {
            exit(0);
        }
        S->top = S->base+S->stacksize;
        S->stacksize += STACKINCREMENT;
    }
    *S->top++ = e;
    return OK;
}

Status Pop(SqStack *S,SElemType *e){
    if(S->top==S->base)
    {
        return ERROR;
    }
    *e = *(--S->top);
    return OK;
}





 

[!--infotagslink--]

相关文章

  • 在C#中使用二叉树实时计算海量用户积分排名的实现详解

    这篇文章主要介绍了在C#中使用二叉树实时计算海量用户积分排名的实现详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧...2020-06-25
  • MySQL的日志基础知识及基本操作学习教程

    MySQL日志主要包含:错误日志、查询日志、慢查询日志、事务日志、二进制日志;日志是mysql数据库的重要组成部分。日志文件中记录着mysql数据库运行期间发生的变化;也就是说用来记录mysql数据库的客户端连接状况、SQL语句...2015-11-24
  • C# 对XML基本操作代码总结

    C# 对XML基本操作包括读取节点的数据,添加节点。读取节点属性,修改节点属性等...2020-06-25
  • 举例讲解C语言程序中对二叉树数据结构的各种遍历方式

    这篇文章主要介绍了举例讲解C语言程序中对二叉树数据结构的各种遍历方式,先序中序后序二叉树遍历几乎成了最老生常谈的数据结构基础知识,的朋友可以参考下...2020-04-25
  • 一波二叉树遍历问题的C++解答实例分享

    这篇文章主要介绍了一波二叉树遍历问题的C++解答实例分享,包括节点打印和转换为镜像等问题的解答,需要的朋友可以参考下...2020-04-25
  • C语言数据结构之二叉树的非递归后序遍历算法

    这篇文章主要介绍了C语言数据结构之二叉树的非递归后序遍历算法的相关资料,希望通过本文能帮助到大家,让大家实现这样的功能,需要的朋友可以参考下...2020-04-25
  • C++使用递归和非递归算法实现的二叉树叶子节点个数计算方法

    这篇文章主要介绍了C++使用递归和非递归算法实现的二叉树叶子节点个数计算方法,涉及C++二叉树的定义、遍历、统计相关操作技巧,需要的朋友可以参考下...2020-04-25
  • C++二叉树结构的建立与基本操作

    二叉树是数据结构中的树的一种特殊情况,有关二叉树的相关概念,这里不再赘述,如果不了解二叉树相关概念,建议先学习数据结构中的二叉树的知识点...2020-04-25
  • php实现的二叉树遍历算法示例

    这篇文章主要介绍了php实现的二叉树遍历算法,结合具体实例形式分析了php针对二叉树的常用前序、中序及后序遍历算法实现技巧,需要的朋友可以参考下...2017-06-20
  • Python字符串的15个基本操作(小结)

    这篇文章主要介绍了Python字符串的15个基本操作,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧...2021-02-04
  • 如何在Python中创建二叉树

    这篇文章主要介绍了如何在Python中创建二叉树,帮助大家更好的理解和学习使用python,感兴趣的朋友可以了解下...2021-03-30
  • Jquery EasyUI的添加,修改,删除,查询等基本操作介绍

    初识Jquery EasyUI看了一些博主用其开发出来的项目,页面很炫,感觉功能挺强大,效果也挺不错,最近一直想系统学习一套前台控件,于是在网上找了一些参考示例。写了一些基本的增删改查功能,算是对该控件的基本入门。后续有时间...2013-10-13
  • C语言 二叉查找树性质详解及实例代码

    这篇文章主要介绍了C语言 二叉查找树性质详解及实例代码的相关资料,需要的朋友可以参考下...2020-04-25
  • mysql常识和基本操作

    字段类型    1.INT[(M)]    正常大小整数类型    2.DOUBLE[(M,D)] [ZEROFILL]    正常大小(双精密)浮点数字类型    3.DATE    日期类型。支持的...2016-11-25
  • C++基于先序、中序遍历结果重建二叉树的方法

    这篇文章主要介绍了C++基于先序、中序遍历结果重建二叉树的方法,结合实例形式分析了基于C++构建二叉树的相关操作技巧,需要的朋友可以参考下...2020-04-25
  • C++基于递归和非递归算法判定两个二叉树结构是否完全相同(结构和数据都相同)

    这篇文章主要介绍了C++基于递归和非递归算法判定两个二叉树结构是否完全相同,若判断二叉树的结构和数据都相同则为完全相同.涉及C++二叉树的创建、遍历、比较等相关操作技巧,需要的朋友可以参考下...2020-04-25
  • C++实现二叉树基本操作详解

    这篇文章主要为大家详细介绍了C++实现二叉树基本操作,具有一定的参考价值,感兴趣的小伙伴们可以参考一下...2020-04-25
  • C语言实现二叉树遍历的迭代算法

    这篇文章主要介绍了C语言实现二叉树遍历的迭代算法,包括二叉树的中序遍历、先序遍历及后序遍历等,是非常经典的算法,需要的朋友可以参考下...2020-04-25
  • c++先序二叉树的构建详解

    在本篇文章里小编给大家分享了关于c++先序二叉树的构建的相关知识点,需要的朋友们跟着学习下。...2020-04-25
  • 平衡二叉树的实现实例

    这篇文章主要介绍了平衡二叉树的实现实例,需要的朋友可以参考下...2020-04-25