python人工智能tensorflow函数tf.nn.dropout使用方法

 更新时间:2022年5月5日 13:05  点击:318 作者:Bubbliiiing

前言

神经网络在设置的神经网络足够复杂的情况下,可以无限逼近一段非线性连续函数,但是如果神经网络设置的足够复杂,将会导致过拟合(overfitting)的出现,就好像下图这样。

看到这个蓝色曲线,我就知道:

很明显蓝色曲线是overfitting的结果,尽管它很好的拟合了每一个点的位置,但是曲线是歪歪曲曲扭扭捏捏的,这个的曲线不具有良好的鲁棒性,在实际工程实验中,我们更希望得到如黑色线一样的曲线。

tf.nn.dropout函数介绍

tf.nn.dropout是tensorflow的好朋友,它的作用是为了减轻过拟合带来的问题而使用的函数,它一般用在每个连接层的输出。

Dropout就是在不同的训练过程中,按照一定概率使得某些神经元停止工作。也就是让每个神经元按照一定的概率停止工作,这次训练过程中不更新权值,也不参加神经网络的计算。但是它的权重依然存在,下次更新时可能会使用到它。

def dropout(x, keep_prob, noise_shape=None, seed=None, name=None)

x 一般是每一层的输出

keep_prob,保留keep_prob的神经元继续工作,其余的停止工作与更新

在实际定义每一层神经元的时候,可以加入dropout。

def add_layer(inputs,in_size,out_size,n_layer,activation_function = None,keep_prob = 1):
    layer_name = 'layer%s'%n_layer
    with tf.name_scope(layer_name):
        with tf.name_scope("Weights"):
            Weights = tf.Variable(tf.random_normal([in_size,out_size]),name = "Weights")
            tf.summary.histogram(layer_name+"/weights",Weights)
        with tf.name_scope("biases"):
            biases = tf.Variable(tf.zeros([1,out_size]) + 0.1,name = "biases")
            tf.summary.histogram(layer_name+"/biases",biases)
        with tf.name_scope("Wx_plus_b"):
            Wx_plus_b = tf.matmul(inputs,Weights) + biases
            #dropout一般加载每个神经层的输出
            Wx_plus_b = tf.nn.dropout(Wx_plus_b,keep_prob)
            #看这里看这里,dropout在这里。
            tf.summary.histogram(layer_name+"/Wx_plus_b",Wx_plus_b)
        if activation_function == None :
            outputs = Wx_plus_b 
        else:
            outputs = activation_function(Wx_plus_b)
        tf.summary.histogram(layer_name+"/outputs",outputs)
        return outputs

但需要注意的是,神经元的输出层不可以定义dropout参数。因为输出层就是输出的是结果,在输出层定义参数的话,就会导致输出结果被dropout掉。

例子

本次例子使用sklearn.datasets,在进行测试的时候,我们只需要改变最下方keep_prob:0.5的值即可,1代表不进行dropout。

代码

import tensorflow as tf
from sklearn.datasets import load_digits
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelBinarizer
digits = load_digits()
X = digits.data
y = digits.target
y = LabelBinarizer().fit_transform(y)
X_train,X_test,Y_train,Y_test = train_test_split(X,y,test_size = 500)
def add_layer(inputs,in_size,out_size,n_layer,activation_function = None,keep_prob = 1):
    layer_name = 'layer%s'%n_layer
    with tf.name_scope(layer_name):
        with tf.name_scope("Weights"):
            Weights = tf.Variable(tf.random_normal([in_size,out_size]),name = "Weights")
            tf.summary.histogram(layer_name+"/weights",Weights)
        with tf.name_scope("biases"):
            biases = tf.Variable(tf.zeros([1,out_size]) + 0.1,name = "biases")
            tf.summary.histogram(layer_name+"/biases",biases)
        with tf.name_scope("Wx_plus_b"):
            Wx_plus_b = tf.matmul(inputs,Weights) + biases
            Wx_plus_b = tf.nn.dropout(Wx_plus_b,keep_prob)
            tf.summary.histogram(layer_name+"/Wx_plus_b",Wx_plus_b)
        if activation_function == None :
            outputs = Wx_plus_b 
        else:
            outputs = activation_function(Wx_plus_b)
        tf.summary.histogram(layer_name+"/outputs",outputs)
        return outputs
def compute_accuracy(x_data,y_data,prob = 1):
    global prediction
    y_pre = sess.run(prediction,feed_dict = {xs:x_data,keep_prob:prob})
    correct_prediction = tf.equal(tf.arg_max(y_data,1),tf.arg_max(y_pre,1))
    accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))
    result = sess.run(accuracy,feed_dict = {xs:x_data,ys:y_data,keep_prob:prob})
    return result
keep_prob = tf.placeholder(tf.float32)
xs = tf.placeholder(tf.float32,[None,64])
ys = tf.placeholder(tf.float32,[None,10])
l1 = add_layer(xs,64,100,'l1',activation_function=tf.nn.tanh, keep_prob = keep_prob)
l2 = add_layer(l1,100,100,'l2',activation_function=tf.nn.tanh, keep_prob = keep_prob)
prediction = add_layer(l1,100,10,'l3',activation_function = tf.nn.softmax, keep_prob = 1)
with tf.name_scope("loss"):
    loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=ys,logits = prediction),name = 'loss')
    tf.summary.scalar("loss",loss)
train = tf.train.AdamOptimizer(0.01).minimize(loss)
init = tf.initialize_all_variables()
merged = tf.summary.merge_all()
with tf.Session() as sess:
    sess.run(init)
    train_writer =  tf.summary.FileWriter("logs/strain",sess.graph)
    test_writer = tf.summary.FileWriter("logs/test",sess.graph)
    for i in range(5001):
        sess.run(train,feed_dict = {xs:X_train,ys:Y_train,keep_prob:0.5})
        if i % 500 == 0:
            print("训练%d次的识别率为:%f。"%((i+1),compute_accuracy(X_test,Y_test,prob=0.5)))
            train_result = sess.run(merged,feed_dict={xs:X_train,ys:Y_train,keep_prob:0.5})
            test_result = sess.run(merged,feed_dict={xs:X_test,ys:Y_test,keep_prob:0.5})
            train_writer.add_summary(train_result,i)
            test_writer.add_summary(test_result,i) 

keep_prob = 0.5

训练结果为:

训练1次的识别率为:0.086000。
训练501次的识别率为:0.890000。
训练1001次的识别率为:0.938000。
训练1501次的识别率为:0.952000。
训练2001次的识别率为:0.952000。
训练2501次的识别率为:0.946000。
训练3001次的识别率为:0.940000。
训练3501次的识别率为:0.932000。
训练4001次的识别率为:0.970000。
训练4501次的识别率为:0.952000。
训练5001次的识别率为:0.950000。

这是keep_prob = 0.5时tensorboard中的loss的图像:

keep_prob = 1

训练结果为:

训练1次的识别率为:0.160000。
训练501次的识别率为:0.754000。
训练1001次的识别率为:0.846000。
训练1501次的识别率为:0.854000。
训练2001次的识别率为:0.852000。
训练2501次的识别率为:0.852000。
训练3001次的识别率为:0.860000。
训练3501次的识别率为:0.854000。
训练4001次的识别率为:0.856000。
训练4501次的识别率为:0.852000。
训练5001次的识别率为:0.852000。

这是keep_prob = 1时tensorboard中的loss的图像:

可以明显看出来keep_prob = 0.5的训练集和测试集的曲线更加贴近。

以上就是python人工智能tensorflow函数tf.nn.dropout使用示例的详细内容,更多关于tensorflow函数tf.nn.dropout的资料请关注猪先飞其它相关文章!

原文出处:https://blog.csdn.net/weixin_44791964/article/details/969725

[!--infotagslink--]

相关文章

  • python opencv 画外接矩形框的完整代码

    这篇文章主要介绍了python-opencv-画外接矩形框的实例代码,代码简单易懂,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下...2021-09-04
  • Python astype(np.float)函数使用方法解析

    这篇文章主要介绍了Python astype(np.float)函数使用方法解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下...2020-06-08
  • 最炫Python烟花代码全解析

    2022虎年新年即将来临,小编为大家带来了一个利用Python编写的虎年烟花特效,堪称全网最绚烂,文中的示例代码简洁易懂,感兴趣的同学可以动手试一试...2022-02-14
  • python中numpy.empty()函数实例讲解

    在本篇文章里小编给大家分享的是一篇关于python中numpy.empty()函数实例讲解内容,对此有兴趣的朋友们可以学习下。...2021-02-06
  • python-for x in range的用法(注意要点、细节)

    这篇文章主要介绍了python-for x in range的用法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧...2021-05-10
  • Python 图片转数组,二进制互转操作

    这篇文章主要介绍了Python 图片转数组,二进制互转操作,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧...2021-03-09
  • Python中的imread()函数用法说明

    这篇文章主要介绍了Python中的imread()函数用法说明,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧...2021-03-16
  • python实现b站直播自动发送弹幕功能

    这篇文章主要介绍了python如何实现b站直播自动发送弹幕,帮助大家更好的理解和学习使用python,感兴趣的朋友可以了解下...2021-02-20
  • python Matplotlib基础--如何添加文本和标注

    这篇文章主要介绍了python Matplotlib基础--如何添加文本和标注,帮助大家更好的利用Matplotlib绘制图表,感兴趣的朋友可以了解下...2021-01-26
  • 解决python 使用openpyxl读写大文件的坑

    这篇文章主要介绍了解决python 使用openpyxl读写大文件的坑,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧...2021-03-13
  • python 计算方位角实例(根据两点的坐标计算)

    今天小编就为大家分享一篇python 计算方位角实例(根据两点的坐标计算),具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧...2020-04-27
  • python实现双色球随机选号

    这篇文章主要为大家详细介绍了python实现双色球随机选号,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下...2020-05-02
  • python中使用np.delete()的实例方法

    在本篇文章里小编给大家整理的是一篇关于python中使用np.delete()的实例方法,对此有兴趣的朋友们可以学习参考下。...2021-02-01
  • 使用Python的pencolor函数实现渐变色功能

    这篇文章主要介绍了使用Python的pencolor函数实现渐变色功能,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下...2021-03-09
  • python自动化办公操作PPT的实现

    这篇文章主要介绍了python自动化办公操作PPT的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧...2021-02-05
  • Python getsizeof()和getsize()区分详解

    这篇文章主要介绍了Python getsizeof()和getsize()区分详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧...2020-11-20
  • 解决python 两个时间戳相减出现结果错误的问题

    这篇文章主要介绍了解决python 两个时间戳相减出现结果错误的问题,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧...2021-03-12
  • python实现学生通讯录管理系统

    这篇文章主要为大家详细介绍了python实现学生通讯录管理系统,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下...2021-02-25
  • PyTorch一小时掌握之迁移学习篇

    这篇文章主要介绍了PyTorch一小时掌握之迁移学习篇,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下...2021-09-08
  • Python绘制的爱心树与表白代码(完整代码)

    这篇文章主要介绍了Python绘制的爱心树与表白代码,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下...2021-04-06