pytorch finetuning 自己的图片进行训练操作

 更新时间:2021年6月5日 15:00  点击:2033

一、pytorch finetuning 自己的图片进行训练

这种读取图片的方式用的是torch自带的 ImageFolder,读取的文件夹必须在一个大的子文件下,按类别归好类。

就像我现在要区分三个类别。

#perpare data set
#train data
train_data=torchvision.datasets.ImageFolder('F:/eyeDataSet/trainData',transform=transforms.Compose(
         [
            transforms.Scale(256),
            transforms.CenterCrop(224),
            transforms.ToTensor()
       ]))
print(len(train_data))
train_loader=DataLoader(train_data,batch_size=20,shuffle=True)

然后就是fine tuning自己的网络,在torch中可以对整个网络修改后,训练全部的参数也可以只训练其中的一部分,我这里就只训练最后一个全连接层。

torchvision中提供了很多常用的模型,比如resnet ,Vgg,Alexnet等等

# prepare model
mode1_ft_res18=torchvision.models.resnet18(pretrained=True)
for param in mode1_ft_res18.parameters():
    param.requires_grad=False
num_fc=mode1_ft_res18.fc.in_features
mode1_ft_res18.fc=torch.nn.Linear(num_fc,3)

定义自己的优化器,注意这里的参数只传入最后一层的

#loss function and optimizer
criterion=torch.nn.CrossEntropyLoss()
#parameters only train the last fc layer
optimizer=torch.optim.Adam(mode1_ft_res18.fc.parameters(),lr=0.001)

然后就可以开始训练了,定义好各种参数。

#start train
#label  not  one-hot encoder
EPOCH=1
for epoch in range(EPOCH):
    train_loss=0.
    train_acc=0.
    for step,data in enumerate(train_loader):
        batch_x,batch_y=data
        batch_x,batch_y=Variable(batch_x),Variable(batch_y)
        #batch_y not one hot
        #out is the probability of eatch class
        # such as one sample[-1.1009  0.1411  0.0320],need to calculate the max index
        # out shape is batch_size * class
        out=mode1_ft_res18(batch_x)
        loss=criterion(out,batch_y)
        train_loss+=loss.data[0]
        # pred is the expect class
        #batch_y is the true label
        pred=torch.max(out,1)[1]
        train_correct=(pred==batch_y).sum()
        train_acc+=train_correct.data[0]
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        if step%14==0:
            print('Epoch: ',epoch,'Step',step,
                  'Train_loss: ',train_loss/((step+1)*20),'Train acc: ',train_acc/((step+1)*20))

测试部分和训练部分类似这里就不一一说明。

这样就完整了对自己网络的训练测试,完整代码如下:

import torch
import numpy as np
import torchvision
from torchvision import transforms,utils
from torch.utils.data import DataLoader
from torch.autograd import Variable
#perpare data set
#train data
train_data=torchvision.datasets.ImageFolder('F:/eyeDataSet/trainData',transform=transforms.Compose(
           [
               transforms.Scale(256),
               transforms.CenterCrop(224),
               transforms.ToTensor()
         ]))
print(len(train_data))
train_loader=DataLoader(train_data,batch_size=20,shuffle=True)
 
#test data
test_data=torchvision.datasets.ImageFolder('F:/eyeDataSet/testData',transform=transforms.Compose(
           [
         transforms.Scale(256),
         transforms.CenterCrop(224),
         transforms.ToTensor()
         ]))
test_loader=DataLoader(test_data,batch_size=20,shuffle=True)
 
# prepare model
mode1_ft_res18=torchvision.models.resnet18(pretrained=True)
for param in mode1_ft_res18.parameters():
    param.requires_grad=False
num_fc=mode1_ft_res18.fc.in_features
mode1_ft_res18.fc=torch.nn.Linear(num_fc,3)
 
#loss function and optimizer
criterion=torch.nn.CrossEntropyLoss()
#parameters only train the last fc layer
optimizer=torch.optim.Adam(mode1_ft_res18.fc.parameters(),lr=0.001)
 
#start train
#label  not  one-hot encoder
EPOCH=1
for epoch in range(EPOCH):
    train_loss=0.
    train_acc=0.
    for step,data in enumerate(train_loader):
        batch_x,batch_y=data
        batch_x,batch_y=Variable(batch_x),Variable(batch_y)
        #batch_y not one hot
        #out is the probability of eatch class
        # such as one sample[-1.1009  0.1411  0.0320],need to calculate the max index
        # out shape is batch_size * class
        out=mode1_ft_res18(batch_x)
        loss=criterion(out,batch_y)
        train_loss+=loss.data[0]
        # pred is the expect class
        #batch_y is the true label
        pred=torch.max(out,1)[1]
        train_correct=(pred==batch_y).sum()
        train_acc+=train_correct.data[0]
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        if step%14==0:
            print('Epoch: ',epoch,'Step',step,
                  'Train_loss: ',train_loss/((step+1)*20),'Train acc: ',train_acc/((step+1)*20))
 
    #print('Epoch: ', epoch, 'Train_loss: ', train_loss / len(train_data), 'Train acc: ', train_acc / len(train_data))
 
# test model
mode1_ft_res18.eval()
eval_loss=0
eval_acc=0
for step ,data in enumerate(test_loader):
    batch_x,batch_y=data
    batch_x,batch_y=Variable(batch_x),Variable(batch_y)
    out=mode1_ft_res18(batch_x)
    loss = criterion(out, batch_y)
    eval_loss += loss.data[0]
    # pred is the expect class
    # batch_y is the true label
    pred = torch.max(out, 1)[1]
    test_correct = (pred == batch_y).sum()
    eval_acc += test_correct.data[0]
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()
print( 'Test_loss: ', eval_loss / len(test_data), 'Test acc: ', eval_acc / len(test_data))

二、PyTorch 利用预训练模型进行Fine-tuning

在Deep Learning领域,很多子领域的应用,比如一些动物识别,食物的识别等,公开的可用的数据库相对于ImageNet等数据库而言,其规模太小了,无法利用深度网络模型直接train from scratch,容易引起过拟合,这时就需要把一些在大规模数据库上已经训练完成的模型拿过来,在目标数据库上直接进行Fine-tuning(微调),这个已经经过训练的模型对于目标数据集而言,只是一种相对较好的参数初始化方法而已,尤其是大数据集与目标数据集结构比较相似的话,经过在目标数据集上微调能够得到不错的效果。

Fine-tune预训练网络的步骤:

1. 首先更改预训练模型分类层全连接层的数目,因为一般目标数据集的类别数与大规模数据库的类别数不一致,更改为目标数据集上训练集的类别数目即可,一致的话则无需更改;

2. 把分类器前的网络的所有层的参数固定,即不让它们参与学习,不进行反向传播,只训练分类层的网络,这时学习率可以设置的大一点,如是原来初始学习率的10倍或几倍或0.01等,这时候网络训练的比较快,因为除了分类层,其它层不需要进行反向传播,可以多尝试不同的学习率设置。

3.接下来是设置相对较小的学习率,对整个网络进行训练,这时网络训练变慢啦。

下面对利用PyTorch深度学习框架Fine-tune预训练网络的过程中涉及到的固定可学习参数,对不同的层设置不同的学习率等进行详细讲解。

1. PyTorch对某些层固定网络的可学习参数的方法:

class Net(nn.Module):
    def __init__(self, num_classes=546):
        super(Net, self).__init__()
        self.features = nn.Sequential(
 
            nn.Conv2d(1, 64, kernel_size=3, stride=2, padding=1),
            nn.BatchNorm2d(64),
            nn.ReLU(inplace=True),
 
            nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1),
            nn.BatchNorm2d(64),
            nn.ReLU(inplace=True),
        )
 
        self.Conv1_1 = nn.Sequential(
 
            nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1),
            nn.BatchNorm2d(64),
            nn.ReLU(inplace=True),
 
            nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1),
            nn.BatchNorm2d(64),
        )
 
  for p in self.parameters():
            p.requires_grad=False
        self.Conv1_2 = nn.Sequential(
 
            nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1),
            nn.BatchNorm2d(64),
            nn.ReLU(inplace=True),
 
            nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1),
            nn.BatchNorm2d(64),
        )

如上述代码,则模型Net网络中self.features与self.Conv1_1层中的参数便是固定,不可学习的。这主要看代码:

for p in self.parameters():
    p.requires_grad=False

插入的位置,这段代码前的所有层的参数是不可学习的,也就没有反向传播过程。也可以指定某一层的参数不可学习,如下:

for p in  self.features.parameters():
    p.requires_grad=False

则 self.features层所有参数均是不可学习的。

注意,上述代码设置若要真正生效,在训练网络时需要在设置优化器如下:

 optimizer = torch.optim.SGD(filter(lambda p: p.requires_grad, model.parameters()), args.lr,
        momentum=args.momentum,
        weight_decay=args.weight_decay)

2. PyTorch之为不同的层设置不同的学习率

model = Net()
conv1_2_params = list(map(id, model.Conv1_2.parameters()))
base_params = filter(lambda p: id(p) not in conv1_2_params,
                     model.parameters())
optimizer = torch.optim.SGD([
            {'params': base_params},
            {'params': model.Conv1_2.parameters(), 'lr': 10 * args.lr}], args.lr,             
            momentum=args.momentum, weight_decay=args.weight_decay)

上述代码表示将模型Net网络的 self.Conv1_2层的学习率设置为传入学习率的10倍,base_params的学习没有明确设置,则默认为传入的学习率args.lr。

注意:

[{'params': base_params}, {'params': model.Conv1_2.parameters(), 'lr': 10 * args.lr}]

表示为列表中的字典结构。

这种方法设置不同的学习率显得不够灵活,可以为不同的层设置灵活的学习率,可以采用如下方法在adjust_learning_rate函数中设置:

def adjust_learning_rate(optimizer, epoch, args):
    lre = []
    lre.extend([0.01] * 10)
    lre.extend([0.005] * 10)
    lre.extend([0.0025] * 10)
    lr = lre[epoch]
    optimizer.param_groups[0]['lr'] = 0.9 * lr
    optimizer.param_groups[1]['lr'] = 10 * lr
    print(param_group[0]['lr'])
    print(param_group[1]['lr'])

上述代码中的optimizer.param_groups[0]就代表[{'params': base_params}, {'params': model.Conv1_2.parameters(), 'lr': 10 * args.lr}]中的'params': base_params},optimizer.param_groups[1]代表{'params': model.Conv1_2.parameters(), 'lr': 10 * args.lr},这里设置的学习率会把args.lr给覆盖掉,个人认为上述代码在设置学习率方面更灵活一些。上述代码也可如下变成实现(注意学习率随便设置的,未与上述代码保持一致):

def adjust_learning_rate(optimizer, epoch, args):
    lre = np.logspace(-2, -4, 40)
    lr = lre[epoch]
    for i in range(len(optimizer.param_groups)):
        param_group = optimizer.param_groups[i]
        if i == 0:
            param_group['lr'] = 0.9 * lr
        else:
            param_group['lr'] = 10 * lr
        print(param_group['lr'])

下面贴出SGD优化器的PyTorch实现,及其每个参数的设置和表示意义,具体如下:

import torch
from .optimizer import Optimizer, required
 
class SGD(Optimizer):
    r"""Implements stochastic gradient descent (optionally with momentum).
    Nesterov momentum is based on the formula from
    `On the importance of initialization and momentum in deep learning`__.
    Args:
        params (iterable): iterable of parameters to optimize or dicts defining
            parameter groups
        lr (float): learning rate
        momentum (float, optional): momentum factor (default: 0)
        weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
        dampening (float, optional): dampening for momentum (default: 0)
        nesterov (bool, optional): enables Nesterov momentum (default: False)
    Example:
        >>> optimizer = torch.optim.SGD(model.parameters(), lr=0.1, momentum=0.9)
        >>> optimizer.zero_grad()
        >>> loss_fn(model(input), target).backward()
        >>> optimizer.step()
    __ http://www.cs.toronto.edu/%7Ehinton/absps/momentum.pdf
    .. note::
        The implementation of SGD with Momentum/Nesterov subtly differs from
        Sutskever et. al. and implementations in some other frameworks.
        Considering the specific case of Momentum, the update can be written as
        .. math::
                  v = \rho * v + g \\
                  p = p - lr * v
        where p, g, v and :math:`\rho` denote the parameters, gradient,
        velocity, and momentum respectively.
        This is in contrast to Sutskever et. al. and
        other frameworks which employ an update of the form
        .. math::
             v = \rho * v + lr * g \\
             p = p - v
        The Nesterov version is analogously modified.
    """
 
    def __init__(self, params, lr=required, momentum=0, dampening=0,
                 weight_decay=0, nesterov=False):
        if lr is not required and lr < 0.0:
            raise ValueError("Invalid learning rate: {}".format(lr))
        if momentum < 0.0:
            raise ValueError("Invalid momentum value: {}".format(momentum))
        if weight_decay < 0.0:
            raise ValueError("Invalid weight_decay value: {}".format(weight_decay))
 
        defaults = dict(lr=lr, momentum=momentum, dampening=dampening,
                        weight_decay=weight_decay, nesterov=nesterov)
        if nesterov and (momentum <= 0 or dampening != 0):
            raise ValueError("Nesterov momentum requires a momentum and zero dampening")
        super(SGD, self).__init__(params, defaults)
 
    def __setstate__(self, state):
        super(SGD, self).__setstate__(state)
        for group in self.param_groups:
            group.setdefault('nesterov', False)
 
    def step(self, closure=None):
        """Performs a single optimization step.
        Arguments:
            closure (callable, optional): A closure that reevaluates the model
                and returns the loss.
        """
        loss = None
        if closure is not None:
            loss = closure()
 
        for group in self.param_groups:
            weight_decay = group['weight_decay']
            momentum = group['momentum']
            dampening = group['dampening']
            nesterov = group['nesterov']
 
            for p in group['params']:
                if p.grad is None:
                    continue
                d_p = p.grad.data
                if weight_decay != 0:
                    d_p.add_(weight_decay, p.data)
                if momentum != 0:
                    param_state = self.state[p]
                    if 'momentum_buffer' not in param_state:
                        buf = param_state['momentum_buffer'] = torch.zeros_like(p.data)
                        buf.mul_(momentum).add_(d_p)
                    else:
                        buf = param_state['momentum_buffer']
                        buf.mul_(momentum).add_(1 - dampening, d_p)
                    if nesterov:
                        d_p = d_p.add(momentum, buf)
                    else:
                        d_p = buf
 
                p.data.add_(-group['lr'], d_p)
 
        return loss

经验总结:

在Fine-tuning时最好不要隔层设置层的参数的可学习与否,这样做一般效果饼不理想,一般准则即可,即先Fine-tuning分类层,学习率设置的大一些,然后在将整个网络设置一个较小的学习率,所有层一起训练。

至于不先经过Fine-tune分类层,而是将整个网络所有层一起训练,只是分类层的学习率相对设置大一些,这样做也可以,至于哪个效果更好,没评估过。当用三元组损失(triplet loss)微调用softmax loss训练的网络时,可以设置阶梯型的较小学习率,整个网络所有层一起训练,效果比较好,而不用先Fine-tune分类层前一层的输出。

以上为个人经验,希望能给大家一个参考,也希望大家多多支持猪先飞。

[!--infotagslink--]

相关文章

  • 使用PHP+JavaScript将HTML页面转换为图片的实例分享

    这篇文章主要介绍了使用PHP+JavaScript将HTML元素转换为图片的实例分享,文后结果的截图只能体现出替换的字体,也不能说将静态页面转为图片可以加快加载,只是这种做法比较interesting XD需要的朋友可以参考下...2016-04-19
  • C#从数据库读取图片并保存的两种方法

    这篇文章主要介绍了C#从数据库读取图片并保存的方法,帮助大家更好的理解和使用c#,感兴趣的朋友可以了解下...2021-01-16
  • Python 图片转数组,二进制互转操作

    这篇文章主要介绍了Python 图片转数组,二进制互转操作,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧...2021-03-09
  • Photoshop古装美女图片转为工笔画效果制作教程

    今天小编在这里就来给各位Photoshop的这一款软件的使用者们来说说把古装美女图片转为细腻的工笔画效果的制作教程,各位想知道方法的使用者们,那么下面就快来跟着小编一...2016-09-14
  • php抓取网站图片并保存的实现方法

    php如何实现抓取网页图片,相较于手动的粘贴复制,使用小程序要方便快捷多了,喜欢编程的人总会喜欢制作一些简单有用的小软件,最近就参考了网上一个php抓取图片代码,封装了一个php远程抓取图片的类,测试了一下,效果还不错分享...2015-10-30
  • jquery左右滚动焦点图banner图片鼠标经过显示上下页按钮

    jquery左右滚动焦点图banner图片鼠标经过显示上下页按钮...2013-10-13
  • pytorch nn.Conv2d()中的padding以及输出大小方式

    今天小编就为大家分享一篇pytorch nn.Conv2d()中的padding以及输出大小方式,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧...2020-04-27
  • PyTorch一小时掌握之迁移学习篇

    这篇文章主要介绍了PyTorch一小时掌握之迁移学习篇,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下...2021-09-08
  • Linux安装Pytorch1.8GPU(CUDA11.1)的实现

    这篇文章主要介绍了Linux安装Pytorch1.8GPU(CUDA11.1)的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧...2021-03-25
  • Photoshop枪战电影海报图片制作教程

    Photoshop的这一款软件小编相信很多的人都已经是使用过了吧,那么今天小编在这里就给大家带来了用Photoshop软件制作枪战电影海报的教程,想知道制作步骤的玩家们,那么下面...2016-09-14
  • python opencv通过4坐标剪裁图片

    图片剪裁是常用的方法,那么如何通过4坐标剪裁图片,本文就详细的来介绍一下,感兴趣的小伙伴们可以参考一下...2021-06-04
  • 使用PHP下载CSS文件中的图片的代码

    共享一段使用PHP下载CSS文件中的图片的代码 复制代码 代码如下: <?php //note 设置PHP超时时间 set_time_limit(0); //note 取得样式文件内容 $styleFileContent = file_get_contents('images/style.css'); //not...2013-10-04
  • Pytorch之扩充tensor的操作

    这篇文章主要介绍了Pytorch之扩充tensor的操作,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧...2021-03-05
  • pytorch 自定义卷积核进行卷积操作方式

    今天小编就为大家分享一篇pytorch 自定义卷积核进行卷积操作方式,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧...2020-05-06
  • 利用JS实现点击按钮后图片自动切换的简单方法

    下面小编就为大家带来一篇利用JS实现点击按钮后图片自动切换的简单方法。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧...2016-10-25
  • PHP swfupload图片上传的实例代码

    PHP代码如下:复制代码 代码如下:if (isset($_FILES["Filedata"]) || !is_uploaded_file($_FILES["Filedata"]["tmp_name"]) || $_FILES["Filedata"]["error"] != 0) { $upload_file = $_FILES['Filedata']; $fil...2013-10-04
  • C#中图片旋转和翻转(RotateFlipType)用法分析

    这篇文章主要介绍了C#中图片旋转和翻转(RotateFlipType)用法,实例分析了C#图片旋转及翻转Image.RotateFlip方法属性的常用设置技巧,需要的朋友可以参考下...2020-06-25
  • OpenCV如何去除图片中的阴影的实现

    这篇文章主要介绍了OpenCV如何去除图片中的阴影的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧...2021-03-29
  • ps怎么制作图片阴影效果

    ps软件是现在很多人比较喜欢的,有着非常不错的使用效果,这次文章就给大家介绍下ps怎么制作图片阴影效果,还不知道制作方法的赶紧来看看。 ps图片阴影效果怎么做方法/...2017-07-06
  • C#将图片和字节流互相转换并显示到页面上

    本文主要介绍用C#实现图片转换成字节流,字节流转换成图片,并根据图片路径返回图片的字节流,有需要的朋友可以参考下...2020-06-25