mysql的3种分表方案

 更新时间:2014年5月31日 01:01  点击:3090

一、先说一下为什么要分表:
当一张的数据达到几百万时,你查询一次所花的时间会变多,如果有联合查询的话,有可能会死在那儿了。分表的目的就在于此,减小数据库的负担,缩短查询时间。

根据个人经验,mysql执行一个sql的过程如下:
1、接收到sql; 
2、把sql放到排队队列中;
3、执行sql; 
4、返回执行结果。
在这个执行过程中最花时间在什么地方呢?第一,是排队等待的时间,第二,sql的执行时间。其实这二个是一回事,等待的同时,肯定有sql在执行。所以我们要缩短sql的执行时间。

mysql中有一种机制是表锁定和行锁定,为什么要出现这种机制,是为了保证数据的完整性,我举个例子来说吧,如果有二个sql都要修改同一张表的同一条数据,这个时候怎么办呢,是不是二个sql都可以同时修改这条数据呢?很显然mysql对这种情况的处理是,一种是表锁定(myisam存储引擎),一个是行锁定(innodb存储引擎)。表锁定表示你们都不能对这张表进行操作,必须等我对表操作完才行。行锁定也一样,别的sql必须等我对这条数据操作完了,才能对这条数据进行操作。如果数据太多,一次执行的时间太长,等待的时间就越长,这也是我们为什么要分表的原因。  

二、分表

1,做mysql集群,例如:利用mysql cluster ,mysql proxy,mysql replication,drdb等等

有人会问mysql集群,根分表有什么关系吗?虽然它不是实际意义上的分表,但是它启到了分表的作用,做集群的意义是什么呢?为一个数据库减轻负担,说白了就是减少sql排队队列中的sql的数量,举个例子:有10个sql请求,如果放在一个数据库服务器的排队队列中,他要等很长时间,如果把这10个sql请求,分配到5个数据库服务器的排队队列中,一个数据库服务器的队列中只有2个,这样等待时间是不是大大的缩短了呢?这已经很明显了。所以我把它列到了分表的范围以内,我做过一些mysql的集群:

linux mysql proxy 的安装,配置,以及读写分离
mysql replication 互为主从的安装及配置,以及数据同步
优点:扩展性好,没有多个分表后的复杂操作(php代码)
缺点:单个表的数据量还是没有变,一次操作所花的时间还是那么多,硬件开销大。

2,预先估计会出现大数据量并且访问频繁的表,将其分为若干个表

这种预估大差不差的,论坛里面发表帖子的表,时间长了这张表肯定很大,几十万,几百万都有可能。 聊天室里面信息表,几十个人在一起一聊一个晚上,时间长了,这张表的数据肯定很大。像这样的情况很多。所以这种能预估出来的大数据量表,我们就事先分出个N个表,这个N是多少,根据实际情况而定。以聊天信息表为例:

我事先建100个这样的表,message_00,message_01,message_02……….message_98,message_99.然后根据用户的ID来判断这个用户的聊天信息放到哪张表里面,你可以用hash的方式来获得,可以用求余的方式来获得,方法很多,各人想各人的吧。下面用hash的方法来获得表名:

复制代码 代码如下:

<?php
function get_hash_table($table,$userid) {
 $str = crc32($userid);
 if($str<0){
  $hash = "0".substr(abs($str), 0, 1);
 }else{
  $hash = substr($str, 0, 2);
 }
 return $table."_".$hash;
}   

echo get_hash_table('message' , 'user18991');     //结果为message_10
echo get_hash_table('message' , 'user34523');    //结果为message_13
?> 

说明一下,上面的这个方法,告诉我们user18991这个用户的消息都记录在message_10这张表里,user34523这个用户的消息都记录在message_13这张表里,读取的时候,只要从各自的表中读取就行了。

优点:避免一张表出现几百万条数据,缩短了一条sql的执行时间

缺点:当一种规则确定时,打破这条规则会很麻烦,上面的例子中我用的hash算法是crc32,如果我现在不想用这个算法了,改用md5后,会使同一个用户的消息被存储到不同的表中,这样数据乱套了。扩展性很差。

3,利用merge存储引擎来实现分表

我觉得这种方法比较适合,那些没有事先考虑,而已经出现了得,数据查询慢的情况。这个时候如果要把已有的大数据量表分开比较痛苦,最痛苦的事就是改代码,因为程序里面的sql语句已经写好了,现在一张表要分成几十张表,甚至上百张表,这样sql语句是不是要重写呢?举个例子,我很喜欢举例子

mysql>show engines;的时候你会发现mrg_myisam其实就是merge。

复制代码 代码如下:

mysql> CREATE TABLE IF NOT EXISTS `user1` (
 ->   `id` int(11) NOT NULL AUTO_INCREMENT,
 ->   `name` varchar(50) DEFAULT NULL,
 ->   `sex` int(1) NOT NULL DEFAULT '0',
 ->   PRIMARY KEY (`id`)
 -> ) ENGINE=MyISAM  DEFAULT CHARSET=utf8 AUTO_INCREMENT=1 ;
Query OK, 0 rows affected (0.05 sec)   

mysql> CREATE TABLE IF NOT EXISTS `user2` (
 ->   `id` int(11) NOT NULL AUTO_INCREMENT,
 ->   `name` varchar(50) DEFAULT NULL,
 ->   `sex` int(1) NOT NULL DEFAULT '0',
 ->   PRIMARY KEY (`id`)
 -> ) ENGINE=MyISAM  DEFAULT CHARSET=utf8 AUTO_INCREMENT=1 ;
Query OK, 0 rows affected (0.01 sec)   

mysql> INSERT INTO `user1` (`name`, `sex`) VALUES('张映', 0);
Query OK, 1 row affected (0.00 sec)   

mysql> INSERT INTO `user2` (`name`, `sex`) VALUES('tank', 1);
Query OK, 1 row affected (0.00 sec)   

mysql> CREATE TABLE IF NOT EXISTS `alluser` (
 ->   `id` int(11) NOT NULL AUTO_INCREMENT,
 ->   `name` varchar(50) DEFAULT NULL,
 ->   `sex` int(1) NOT NULL DEFAULT '0',
 ->   INDEX(id)
 -> ) TYPE=MERGE UNION=(user1,user2) INSERT_METHOD=LAST AUTO_INCREMENT=1 ;
Query OK, 0 rows affected, 1 warning (0.00 sec)   

mysql> select id,name,sex from alluser;
+----+--------+-----+
| id | name   | sex |
+----+--------+-----+
|  1 | 张映    |   0 |
|  1 | tank   |   1 |
+----+--------+-----+
2 rows in set (0.00 sec)   

mysql> INSERT INTO `alluser` (`name`, `sex`) VALUES('tank2', 0);
Query OK, 1 row affected (0.00 sec)   

mysql> select id,name,sex from user2
 -> ;
+----+-------+-----+
| id | name  | sex |
+----+-------+-----+
|  1 | tank  |   1 |
|  2 | tank2 |   0 |
+----+-------+-----+
2 rows in set (0.00 sec) 

mysql> CREATE TABLE IF NOT EXISTS `user1` (  ->   `id` int(11) NOT NULL AUTO_INCREMENT,  ->   `name` varchar(50) DEFAULT NULL,  ->   `sex` int(1) NOT NULL DEFAULT '0',  ->   PRIMARY KEY (`id`)  -> ) ENGINE=MyISAM  DEFAULT CHARSET=utf8 AUTO_INCREMENT=1 ; Query OK, 0 rows affected (0.05 sec)  mysql> CREATE TABLE IF NOT EXISTS `user2` (  ->   `id` int(11) NOT NULL AUTO_INCREMENT,  ->   `name` varchar(50) DEFAULT NULL,  ->   `sex` int(1) NOT NULL DEFAULT '0',  ->   PRIMARY KEY (`id`)  -> ) ENGINE=MyISAM  DEFAULT CHARSET=utf8 AUTO_INCREMENT=1 ; Query OK, 0 rows affected (0.01 sec)  mysql> INSERT INTO `user1` (`name`, `sex`) VALUES('张映', 0); Query OK, 1 row affected (0.00 sec)  mysql> INSERT INTO `user2` (`name`, `sex`) VALUES('tank', 1); Query OK, 1 row affected (0.00 sec)  mysql> CREATE TABLE IF NOT EXISTS `alluser` (  ->   `id` int(11) NOT NULL AUTO_INCREMENT,  ->   `name` varchar(50) DEFAULT NULL,  ->   `sex` int(1) NOT NULL DEFAULT '0',  ->   INDEX(id)  -> ) TYPE=MERGE UNION=(user1,user2) INSERT_METHOD=LAST AUTO_INCREMENT=1 ; Query OK, 0 rows affected, 1 warning (0.00 sec)  mysql> select id,name,sex from alluser;
+----+--------+-----+
| id | name   | sex |
+----+--------+-----+
|  1 |  张映   |   0 |
|  1 | tank   |   1 |
+----+--------+-----+
2 rows in set (0.00 sec)

mysql> INSERT INTO `alluser` (`name`, `sex`) VALUES('tank2', 0); Query OK, 1 row affected (0.00 sec)  mysql> select id,name,sex from user2  -> ;

+----+-------+-----+
| id | name  | sex |
+----+-------+-----+
|  1 | tank  |   1 |
|  2 | tank2 |   0 |
+----+-------+-----+
2 rows in set (0.00 sec)


从上面的操作中,我不知道你有没有发现点什么?假如我有一张用户表user,有50W条数据,现在要拆成二张表user1和user2,每张表25W条数据,
复制代码 代码如下:

INSERT INTO user1(user1.id,user1.name,user1.sex)SELECT (user.id,user.name,user.sex)FROM user where user.id <= 250000

INSERT INTO user2(user2.id,user2.name,user2.sex)SELECT (user.id,user.name,user.sex)FROM user where user.id > 250000


这样我就成功的将一张user表,分成了二个表,这个时候有一个问题,代码中的sql语句怎么办,以前是一张表,现在变成二张表了,代码改动很大,这样给程序员带来了很大的工作量,有没有好的办法解决这一点呢?办法是把以前的user表备份一下,然后删除掉,上面的操作中我建立了一个alluser表,只把这个alluser表的表名改成user就行了。但是,不是所有的mysql操作都能用的

a,如果你使用 alter table 来把 merge 表变为其它表类型,到底层表的映射就被丢失了。取而代之的,来自底层 myisam 表的行被复制到已更换的表中,该表随后被指定新类型。

b,网上看到一些说replace不起作用,我试了一下可以起作用的。晕一个先

复制代码 代码如下:

mysql> UPDATE alluser SET sex=REPLACE(sex, 0, 1) where id=2;
Query OK, 1 row affected (0.00 sec)
Rows matched: 1  Changed: 1  Warnings: 0   

mysql> select * from alluser;
+----+--------+-----+
| id | name   | sex |
+----+--------+-----+
|  1 | 张映    |   0 |
|  1 | tank   |   1 |
|  2 | tank2  |   1 |
+----+--------+-----+
3 rows in set (0.00 sec) 

mysql> UPDATE alluser SET sex=REPLACE(sex, 0, 1) where id=2; Query OK, 1 row affected (0.00 sec) Rows matched: 1  Changed: 1  Warnings: 0  mysql> select * from alluser;
 +----+--------+-----+
 | id | name   | sex |
 +----+--------+-----+
 |  1 | 张映    |   0 |
 |  1 | tank   |   1 |
 |  2 | tank2  |   1 |
 +----+--------+-----+
 3 rows in set (0.00 sec)



c,一个 merge 表不能在整个表上维持 unique 约束。当你执行一个 insert,数据进入第一个或者最后一个 myisam 表(取决于 insert_method 选项的值)。mysql 确保唯一键值在那个 myisam 表里保持唯一,但不是跨集合里所有的表。

d,当你创建一个 merge 表之时,没有检查去确保底层表的存在以及有相同的机构。当 merge 表被使用之时,mysql 检查每个被映射的表的记录长度是否相等,但这并不十分可靠。如果你从不相似的 myisam 表创建一个 merge 表,你非常有可能撞见奇怪的问题。

c和d在网上看到的,没有测试,大家试一下吧。

优点:扩展性好,并且程序代码改动的不是很大

缺点:这种方法的效果比第二种要差一点

三、总结一下

上面提到的三种方法,我实际做过二种,第一种和第二种。第三种没有做过,所以说的细一点。哈哈。做什么事都有一个度,超过个度就过变得很差,不能一味的做数据库服务器集群,硬件是要花钱买的,也不要一味的分表,分出来1000表,mysql的存储归根到底还以文件的形势存在硬盘上面,一张表对应三个文件,1000个分表就是对应3000个文件,这样检索起来也会变的很慢。我的建议是

方法1和方法2结合的方式来进行分表
方法1和方法3结合的方式来进行分表

我的二个建议适合不同的情况,根据个人情况而定,我觉得会有很多人选择方法1和方法3结合的方式

相关文章

  • MySQL性能监控软件Nagios的安装及配置教程

    这篇文章主要介绍了MySQL性能监控软件Nagios的安装及配置教程,这里以CentOS操作系统为环境进行演示,需要的朋友可以参考下...2015-12-14
  • 详解Mysql中的JSON系列操作函数

    新版 Mysql 中加入了对 JSON Document 的支持,可以创建 JSON 类型的字段,并有一套函数支持对JSON的查询、修改等操作,下面就实际体验一下...2016-08-23
  • PostgreSQL判断字符串是否包含目标字符串的多种方法

    这篇文章主要介绍了PostgreSQL判断字符串是否包含目标字符串的多种方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下...2021-02-23
  • postgresql 实现多表关联删除

    这篇文章主要介绍了postgresql 实现多表关联删除操作,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧...2021-01-02
  • mysql的3种分表方案

    一、先说一下为什么要分表:当一张的数据达到几百万时,你查询一次所花的时间会变多,如果有联合查询的话,有可能会死在那儿了。分表的目的就在于此,减小数据库的负担,缩短查询时间。根据个人经验,mysql执行一个sql的过程如下:1...2014-05-31
  • 深入研究mysql中的varchar和limit(容易被忽略的知识)

    为什么标题要起这个名字呢?commen sence指的是那些大家都应该知道的事情,但往往大家又会会略这些东西,或者对这些东西一知半解,今天我总结下自己在mysql中遇到的一些commen sense类型的问题。 ...2015-03-15
  • Centos5.5中安装Mysql5.5过程分享

    这几天在centos下装mysql,这里记录一下安装的过程,方便以后查阅Mysql5.5.37安装需要cmake,5.6版本开始都需要cmake来编译,5.5以后的版本应该也要装这个。安装cmake复制代码 代码如下: [[email protected] ~]# wget http://www.cm...2015-03-15
  • Windows服务器MySQL中文乱码的解决方法

    我们自己鼓捣mysql时,总免不了会遇到这个问题:插入中文字符出现乱码,虽然这是运维先给配好的环境,但是在自己机子上玩的时候咧,总得知道个一二吧,不然以后如何优雅的吹牛B。...2015-03-15
  • MySQL 字符串拆分操作(含分隔符的字符串截取)

    这篇文章主要介绍了MySQL 字符串拆分操作(含分隔符的字符串截取),具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧...2021-02-22
  • C#连接SQL数据库和查询数据功能的操作技巧

    本文给大家分享C#连接SQL数据库和查询数据功能的操作技巧,本文通过图文并茂的形式给大家介绍的非常详细,需要的朋友参考下吧...2021-05-17
  • 忘记MYSQL密码的6种常用解决方法总结

    首先要声明一点,大部分情况下,修改MySQL密码是需要有mysql里的root权限的...2013-09-11
  • Mysql命令大全(详细篇)

    一、连接Mysql格式: mysql -h主机地址 -u用户名 -p用户密码1、连接到本机上的MYSQL。首先打开DOS窗口,然后进入目录mysql/bin,再键入命令mysql -u root -p,回车后提示你输密码.注意用户名前可以有空格也可以没有空格,但是密...2015-11-08
  • 用VirtualBox构建MySQL测试环境

    宿主机使用网线的时候,客户机在Bridged Adapter模式下,使用Atheros AR8131 PCI-E Gigabit Ethernet Controller上网没问题。 宿主机使用无线的时候,客户机在Bridged Adapter模式下,使用可选项里唯一一个WIFI选项,Microsoft Virtual Wifi Miniport Adapter也无法上网,故弃之。...2013-09-19
  • MySQL数据库备份还原方法

    MySQL命令行导出数据库: 1,进入MySQL目录下的bin文件夹:cd MySQL中到bin文件夹的目录 如我输入的命令行:cd C:/Program Files/MySQL/MySQL Server 4.1/bin (或者直接将windows的环境变量path中添加该目录) ...2013-09-26
  • postgresql数据添加两个字段联合唯一的操作

    这篇文章主要介绍了postgresql数据添加两个字段联合唯一的操作,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧...2021-02-04
  • PostgreSQL TIMESTAMP类型 时间戳操作

    这篇文章主要介绍了PostgreSQL TIMESTAMP类型 时间戳操作,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧...2020-12-26
  • RHEL6.5编译安装MySQL5.6.26教程

    一、准备编译环境,安装所需依赖包yum groupinstall 'Development' -y yum install openssl openssl-devel zlib zlib-devel -y yum install readline-devel pcre-devel ncurses-devel bison-devel cmake -y二、编译安...2015-10-21
  • mysql IS NULL使用索引案例讲解

    这篇文章主要介绍了mysql IS NULL使用索引案例讲解,本篇文章通过简要的案例,讲解了该项技术的了解与使用,以下就是详细内容,需要的朋友可以参考下...2021-08-14
  • mongodb与mysql命令详细对比

    传统的关系数据库一般由数据库(database)、表(table)、记录(record)三个层次概念组成,MongoDB是由数据库(database)、集合(collection)、文档对象(document)三个层次组成。MongoDB对于关系型数据库里的表,但是集合中没有列、行和关...2013-09-11
  • PostgreSQL 中的单引号与双引号用法说明

    这篇文章主要介绍了PostgreSQL 中的单引号与双引号用法说明,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧...2021-02-01